A q-analogue of the dual space to the Lie algebras $\mathrm{gl}(2)$ and $\mathrm{sl}(2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L1
(http://iopscience.iop.org/0305-4470/26/1/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A q-analogue of the dual space to the Lie algebras $g(2)$ and sl(2)

B A Kupershmidt
University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 2 October 1992

Abstract

For the Lie group GL(n), the linear Poisson bracket on the dual space $\mathrm{gl}(n)^{*}$ to the Lie algebra $\mathrm{gl}(n)$ is quadratically deformed to make the coadjoint action of GL(n) into a Poisson action, for arbitrary quadratic Poisson Lie structure on GL(n). For the case $n=2$, these formulae are quantized for both quantum groups $\mathrm{GL}_{q}(2)$ and $\mathrm{SL}_{\mathrm{q}}(2)$.

If G is a Lie group with the Lie algebra \mathcal{G} then the coadjoint action of G on the dual space \mathcal{G}^{*} to \mathcal{G} preserves the natural linear Poisson bracket on \mathcal{G}^{*}. In other words, the action map $\mathrm{Ad}^{*}: \mathrm{G} \times \mathcal{G}^{*} \rightarrow \mathcal{G}^{*}$ is a Poisson map, with the Poisson bracket on G being zero. If G is a Poisson Lie group then this action, in general, is no longer Poisson unless the Poisson structure on \mathcal{G}^{*} is suitably modified. For the case $G=\operatorname{GL}(n)$, this modification takes the form
$\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{2}=r_{i j}^{\varphi \psi} N_{\varphi}^{\alpha} N_{\psi}^{\beta}+r_{\varphi \psi}^{\alpha \beta} N_{i}^{\varphi} N_{j}^{\psi}-r_{i \psi}^{\varphi \beta} N_{\varphi}^{\alpha} N_{j}^{\psi}-r_{\psi j}^{\alpha \varphi} N_{i}^{\psi} N_{\varphi}^{\beta}$
where the quadratic Poisson Lie structure on $\operatorname{GL}(n)$ (and $\operatorname{Mat}(n)$) is

$$
\begin{equation*}
\left\{M_{i}^{\alpha}, M_{j}^{\beta}\right\}=r_{i j}^{\varphi \psi} M_{\varphi}^{\alpha} M_{\psi}^{\beta}-r_{\varphi \psi}^{\alpha \beta} M_{i}^{\varphi} M_{j}^{\psi} \tag{2}
\end{equation*}
$$

The (coboundary) form (2) is the most general quadratic multiplicative Poisson bracket on $\operatorname{Mat}(n)$, with an arbitrary skewsymmetric r-matrix $r_{i j}^{\alpha \beta}=-r_{j i}^{\beta \alpha}$; the summation convention over non-fixed repeated indices is in force.

The action

$$
\begin{equation*}
N \longmapsto M N M^{-1} \tag{3}
\end{equation*}
$$

preserves the Poisson structure (1). The full Poisson structure on $\mathrm{gl}(n)^{*}$ is the sum of the quadratic piece (1) and the standard (quasi)linear piece

$$
\begin{equation*}
\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{1}=\theta\left(N_{i}^{\beta} \delta_{j}^{\alpha}-N_{j}^{\alpha} \delta_{i}^{\beta}\right) \tag{4}
\end{equation*}
$$

where θ belongs to the ring of Poisson invariants on $\mathrm{gl}(n)^{*}$ generated by the elements

$$
\begin{equation*}
\left\{\operatorname{tr}\left(N^{\ell}\right) \mid \ell \in \mathbb{Z}_{+}\right\} \tag{5}
\end{equation*}
$$

Again, the coadjoint action (3) is a Poisson map for the sum $\{,\}_{2}+\{,\}_{1}$. This follows from the following observation, which a posteriori justifies formula (1).

If a Poisson Lie group G acts on a manifold M then the set of (pre) Poisson structures on M which make this action into a Poisson action is an affine space. Indeed, this action is Poisson for the pairs of Poisson brackets

$$
\left(\{,\}_{1}^{G} ;\{,\}_{1}^{M}\right) \quad \text { and } \quad\left(\{,\}_{1}^{G} ;\{,\}_{2}^{M}\right)
$$

iff it is Poisson for the pairs

$$
\left(\{,\}_{1}^{G} ;\{,\}_{1}^{M}\right) \quad \text { and } \quad\left(\{,\}_{2}^{G} ;\{,\}_{2}^{M}\right)
$$

where

$$
\{,\}_{2}^{G}=\{,\}_{1}^{G}-\{,\}_{1}^{G}=0 .
$$

The Poisson brackets (1) and (4) (both of which can be interpreted symplectically) have the following propertics.
(a) These brackets are compatible. This means that for the sum

$$
\begin{equation*}
\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{3}=\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{2}+\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{1} \tag{6}
\end{equation*}
$$

one has

$$
\begin{equation*}
\mathrm{Jac}(3)=\mathrm{Jac}(2)+\mathrm{Jac}(1) . \tag{7}
\end{equation*}
$$

Here

$$
\begin{equation*}
\operatorname{Jac}(s)=\left\{\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{s}, N_{k}^{\gamma}\right\}_{s}+\mathrm{CP} \tag{8}
\end{equation*}
$$

and 'CP' stands for 'cyclic permutation'. Notice that no assumption is made on the vanishing of $\mathrm{Jac}(2)$ and $\operatorname{Jac}(1)$.
(b) The elements $\left\{\operatorname{tr}\left(N^{\ell}\right) \mid \ell \in \mathbb{N}\right\}$ are Casimir elements for each of the Poisson brackets (1), (4), (6). Thus, one can pass from $\mathrm{GL}(n)$ to $\mathrm{SL}(n)$ and from $\mathrm{gl}(n)^{*}$ to $\mathrm{sl}(n)^{*}$.
(c) Each of the Poisson brackets (1),(4),(6),(2) vanishes at the identity $\left\{N_{i}^{\alpha}=\delta_{i}^{\alpha}\right\},\left\{M_{i}^{\alpha}=\delta_{i}^{\alpha}\right\}$. Hence, the action (3) induces a co-representation of the linearized Lie algebra structures on $\mathrm{gl}(n)^{*}: \mathrm{gl}(n)_{N}^{*} \rightarrow \mathrm{gl}(n)_{M}^{*} \times \mathrm{gl}(n)_{N}^{*}$.
(d) The subspace of diagonal matrices is an Abelian subalgebra in each of the Poisson structures (1),(4), (6).
(e) For the quasiclassical limit of the standard quantum group $\mathrm{GL}_{q}(n)$, understood as the symmetry of a pair of quantum affine spaces

$$
\begin{equation*}
x_{i} x_{j}=Q_{i j} x_{j} x_{i} \quad \xi_{i} \xi_{j}=-Q_{j i} \xi_{j} \xi_{i} \quad Q_{i j}=q^{\epsilon \operatorname{sggn}(i-j)} \tag{9}
\end{equation*}
$$

one has

$$
\begin{equation*}
r_{i j}^{k \ell}=\epsilon \operatorname{sgn}(\mathbf{i}-\mathrm{j}) \delta_{\mathrm{ji}}^{\mathrm{k}} \ell \tag{10}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{Jac}(2) & =\left\{\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}_{2}, N_{k}^{\gamma}\right\}_{2}+\mathrm{CP} \\
& =\epsilon^{2}\left(\delta_{j}^{\gamma}\left[N_{i}^{\beta}\left(N^{2}\right)_{k}^{\alpha}-N_{k}^{\alpha}\left(N^{2}\right)_{i}^{\beta}\right]+\delta_{j}^{\alpha}\left[N_{i}^{\gamma}\left(N^{2}\right)_{k}^{\beta}-N_{k}^{\beta}\left(N^{2}\right)_{i}^{\gamma}\right]\right)+\mathrm{CP} \tag{11}
\end{align*}
$$

Hence, for $n=2$ one has $\operatorname{Jac}(2)=0$. For $n \geqslant 3, \operatorname{Jac}(2)$ is not identically zero. Thus, for $g l(n)^{*}$ with $n>2$ and for the choice (9), (10), the Jacobi identities are not satisfied. The case of $\mathrm{gl}(2)^{*}$ (and $\left.\mathrm{sl}(2)^{*}\right)$ is an exceptional one.

Moreover, this exceptional case can be quantized. Recall the commutation relations for a matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{q}(2)
$$

as follows:

$$
\begin{array}{llc}
a b=q^{-1} b a & a c=q^{-1} c a & b d=q^{-1} d b \\
c d=q^{-1} d c & b c=c b & {[a, d]=\left(q^{-1}-q\right) b c .}
\end{array}
$$

Set

$$
N=\left(\begin{array}{ll}
x & u \\
y & v
\end{array}\right)
$$

Under the action $N \longrightarrow M N M^{-1}$, the following relations among the matrix elements of N are preserved:

$$
\begin{align*}
& y u=u y+\left(q^{-2}-q^{2}\right) h^{2}+\mu\left(q^{-1}+q\right) h \quad h=(x-v) /\left(q+q^{-1}\right) \\
& y x=\left(\frac{2 q^{2}}{1+q^{2}} x+\frac{1-q^{2}}{1+q^{2}} v\right) y-\mu y \\
& y v=\left(q^{2} \frac{1-q^{2}}{1+q^{2}}+\frac{1+q^{4}}{1+q^{2}} v\right) y+q^{2} \mu y \\
& u x=\left(\frac{1+q^{-4}}{1+q^{-2}} x+q^{-2} \frac{1-q^{-2}}{1+q^{-2}} v\right) u+q^{-2} \mu u \tag{12}\\
& u v=\left(\frac{1-q^{-2}}{1+q^{-2}} x+\frac{2 q^{-2}}{1+q^{-2}} v\right) u-\mu u \\
& x v=v x .
\end{align*}
$$

Here μ is an arbitrary constant or an element of the ring of invariants (see (c) below). Formulae (12) have the following properties:
(a) The ring $C<y, u, x, v\rangle$ has the PBW property. This is readily seen by applying the diamond lemma to the order $y>u>x>v$.
(b) The q-trace

$$
\begin{equation*}
\operatorname{Tr}_{q}(N)=q x+q^{-1} v \tag{13}
\end{equation*}
$$

is a central element and an invariant of the conjugation by $M \in \mathrm{GL}_{q}(2)$. Decomposing N as

$$
\left(\begin{array}{ll}
x & u \tag{14}\\
y & v
\end{array}\right)=N=\bar{N}+\frac{1}{q+q^{-1}} \operatorname{Tr}_{q}(N) \quad \bar{N}=\left(\begin{array}{cc}
q^{-1} h & u \\
y & -q h
\end{array}\right)
$$

we find the commutation relations between the matrix elements of \bar{N} :

$$
\begin{align*}
& {[y, u]=\left(q^{-2}-q^{2}\right) h^{2}+\mu\left(q^{-1}+q\right) h} \\
& y h=q^{2} h y-q \mu y \tag{15}\\
& u h=q^{-2} h u+q^{-1} \mu u
\end{align*}
$$

describing $\mathrm{sl}_{q}(2)^{*}$.
(c) The elements $\left\{\operatorname{Tr}_{q}\left(N^{\ell}\right) \mid \ell \in \mathbb{N}\right\}$ are central and invariant. This follows from the following q-analogue of the Cayley-Hamilton theorem for the matrix \bar{N} (14):

$$
\begin{equation*}
\bar{N}^{2}+\mu \bar{N}=C 1 \tag{16}
\end{equation*}
$$

where the quadratic Casimir C is given by the formula

$$
\begin{equation*}
C=y u+q^{2} h^{2}-\mu q h=u y+q^{-2} h^{2}+\mu q^{-1} h . \tag{17}
\end{equation*}
$$

The element C is central since

$$
\begin{equation*}
[C, \bar{N}]=\left[\bar{N}^{2}+\mu \bar{N}, \bar{N}\right]=0 \tag{18}
\end{equation*}
$$

(d) The relations (15) are invariant with respect to the involution

$$
\begin{equation*}
u \rightarrow y \quad y \rightarrow u \quad h \rightarrow-h \quad q \rightarrow q^{-1} . \tag{19}
\end{equation*}
$$

Remark. The real forms of formulae (12),(15) can be interpreted as a q-analogue of quaternions and the double cover homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$. This will be elaborated upon in another spacetime.

